Search CTRL + K

Homework 3

Problem Statement

Show that if γ(t)=(x(t),y(t),z(t)) is a curve on S2 then:

dN(γ(t))=(x(t),y(t),z(t))

where N is the Gauss map of S2

Let X(u,v)=(sinu cosvsinu sinvcosu) be a parameterization of S2, then γ(t)=X(u(t),v(t)) and the basis of the tangent vectors are:

Xu=(sinu cosvsinu sinvcosu)u=(cosu cosvcosu sinvsinu)Xv=(sinu cosvsinu sinvcosu)v=(sinu sinvsinu cosv0)

The first fundamental form of S1:

E=XuXu=cos2u cos2v+cos2u sin2v+sin2u=1F=XuXv=(cosu cosv)(sinu sinv)+(cosu sinv)(sinu cosv)=0G=XvXv=sin2u sin2v+sin2u cos2v=sin2u

Second fundamental form of S1:
We first compute the unit normal vector n:

n=Xu×Xv||Xu×Xv|| =1sinu(cosv sin2usinv sin2ucosu sinu)=(cosv sinusinv sinucosu)

and then the second derivatives:

Xuu=(sinu cosvsinu sinvcosu)Xuv=(cosu sinvcosu cosv0)Xvv=(sinu cosvsinu sinv0)

Thus:

L=Xuun=sin2u cos2vsin2u sin2vcos2v=1M=Xuvn=(cosu sinv)(cosv sinu)+(cosu cosv)(sinv sinu)=0N=sin2u cos2vsin2u sin2v=sin2u

We know that dN(w1,w2)=(a11a21a12a22)(w1w2), where

(a11a21a12a22)=(EFFG)1(LMMN)

Thus:

dN(w1,w2)=(a11a21a12a22)(w1w2)=(1001)(w1w2)=(w1w2)

Thus for γ(t)=(u(t)v(t)) it is clear that

dN(γ(t))=(u(t)v(t))=(x(t),y(t),z(t))