Search CTRL + K

Homework 5

Problem Statement

Show that if F=0 then

K=12EG((EvEG)v+(GuEG)u)

and if E=G we get the following equation:

(GvG)v+(GuG)u+2KG=0

It is known that the Gaussian curvature takes the form:

K=1(EGF2)2(|12Euv+Fuv12Guu12EuFu12EvFv12GuEF12GvFG||012Ev12Gv12EvEF12GuFG|)

Let F=0, then:

K=1(EG)2(|12Euv12Guu12Eu12Ev12GuE012Gv0G||012Ev12Gv12EvE012Gu0G|)=1(EG)2(12Gv(12EvE)+G(E(12Euv12Guu)+14GuEv)12Gu(12EGv+G(14Ev2)))=12EG(EuvEuv12Ev(EG)12(EvG+GvE)EG+GuuEG12Gv(EG)12(EvG+GvE)EG)=12EG((EvEG)v+(GuEG)u)

If E=G we get that:

K=12G((GvG)v+(GuG)u)

thus rearranging we get that:

(GvG)v+(GuG)u+2KG=0