Search CTRL + K

Homework 6

Problem Statement

Let X(u,v) be an isothermal parameterization of a minimal surface S (that is F=0 and E=G) and let

(1)φ=12(XuiXv)

Show that:

Xu×Xv=4Im(φ2φ¯3,φ3φ¯1,φ1φ¯2)=2Im(φ×φ¯)

From (1) we can write Xu and Xv as:

Xu=φ+φ¯Xv=φ¯φi

Therefore computing Xu×Xv we obtain that:

Xu×Xv=(φ+φ¯)×(φ¯φi)=2i(φ×φ¯)

Hence if φ=(φ1,φ2,φ3) then:

φ×φ¯=(φ2φ¯3φ3φ¯2φ3φ¯1φ1φ¯3φ1φ¯2φ2φ¯1)=2i(Im(φ2φ¯3)Im(φ3φ¯1)Im(φ1φ¯2))

That is φ×φ¯=i Im(φ×φ¯), the real part is equal to 0 since φ×φ¯=φ×φ¯.

Thus we have shown:

Xu×Xv=2i2i(Im(φ2φ¯3)Im(φ3φ¯1)Im(φ1φ¯2))=4Im(φ2φ¯3φ3φ¯1φ1φ¯2)=2Im(φ×φ¯)