Search CTRL + K

Homework 7

Problem statement

Verify the Gauss Bonett Theorem holds for the sphere and the torus.

Sphere

Let X(u,v)=(sinu cosvsinu sinvcosu) be a parameterization of the unit sphere S1 embedded in R2.
The first fundamental form of S1:

Xu=(sinu cosvsinu sinvcosu)u=(cosu cosvcosu sinvsinu)Xv=(sinu cosvsinu sinvcosu)v=(sinu sinvsinu cosv0)

Thus:

E=XuXu=cos2u cos2v+cos2u sin2v+sin2u=1F=XuXv=(cosu cosv)(sinu sinv)+(cosu sinv)(sinu cosv)=0G=XvXv=sin2u sin2v+sin2u cos2v=sin2u

Second fundamental form of S1:
We first compute the unit normal vector n:

n=Xu×Xv||Xu×Xv|| =1sinu(cosv sin2usinv sin2ucosu sinu)=(cosv sinusinv sinucosu)

and then the second derivatives:

Xuu=(sinu cosvsinu sinvcosu)Xuv=(cosu sinvcosu cosv0)Xvv=(sinu cosvsinu sinv0)

Thus:

L=Xuun=sin2u cos2vsin2u sin2vcos2v=1M=Xuvn=(cosu sinv)(cosv sinu)+(cosu cosv)(sinv sinu)=0N=sin2u cos2vsin2u sin2v=sin2u

Gaussian Curvature of S1:

K=LNM2EGF2=sin2usin2u=1

The boundary δS1= (that is it does not have a boundary) thus:

S1KdA+δS1kg=S11dA

Thus:

S11dA=02π0πsinu du dv=4π

Thus indeed S1KdA+δS1kg=2πχ holds for the unit sphere since χ(S1)=2.

Torus

Let X(u,v)=((R+rcosv)cosu(R+rcosv)sinursinv) be a parameterization of the torus T2.

First fundamental form of T2:

Xu=((R+rcosv)sinu(R+rcosv)cosu0)Xv=(rsinv cosursinv sinurcosv)

Thus:

E=(R+rcosv)2F=0G=r2

Second fundamental form of T2:

The unit normal vector is:

n=(cosu cosvsinu cosvsinv)

and the second derivatives are:

Xuu=((R+rcosv)cosu(R+rcosv)sinu0)Xuv=(rsinv sinursinv cosu0)Xvv=(rcosv cosurcosv sinursinv)

Thus:

L=(R+rcosv)cosvM=0N=r

Gaussian curvature of T2:

K=cosvr(R+rcosv)

The boundary δT2= thus:

T2KdA+δT2kg=T2cosvr(R+rcosv)dA

Computing the right hand side:

T2cosvr(R+r)cosvdA=02π02πcosvr(R+rcosv)r(R+rcosv) du dv=02π02πcosv du dv=0.

Thus indeed then since χ(T2)=0, the theorem holds for the Torus.