Search CTRL + K

Lecture 05 - Various Applications

Let us consider the Heisenberg Spin chain equation:

Su=S×Sxx

If we identify with its tangent ST then we obtain:

Tu=T×Tss

If we work on the Binormal frame, recall:

(TNB)s=(0κ0κ0τ0τ0)(TNB)

Then we obtain an equation that is both a binormal and normal flow:

Tu=T×(κN)=κsB+κτN

If we use the following compatibility condition:

Tus=TsuNus=NsuBus=Bsu

We obtain the following result (Da Rios System):

κu=2κsτκτsτu=[κssκτ2]sκκs

Thus if we use our (favourite) Hasimoto map we obtain our NLSE again:

iψu=ψss+12|ψ|2ψ
'Recipe'

Physical Equation FrenetSerret Moving Curve mapHasimoto NLSE(+family)

Inhomogeneous Heisenberg Spin Chain

H=fi(s)SiSi+1, where fi is a function of s.
Continuum case:

St=(fS×Sx)xTu=(fT×Ts)s=(fκ)sBfκτN

('Homework') We will obtain after some computation:

iψu+(fψ)ss+2ψ(f|ψ|2+f(s)|ψ|2ds)=0

This is a generalization of the NLSE.

Linear Induction Approximation (LIA)

Suppose vij is a velocity vector for a small neighborhood around a point γi, with k is the vortex strength:

γij=γiγjvij=k4π|γij|3γijsi×γij dsj

LIA concept in the limiting case of a vortex filament of infinitesimal core size (long distance effects are considered)

γij=γij(ξ,t)=γi(si,t)γj(si+ξ,t)γij=a1ξ+a2ξ2+...

where a1=γijξ and a2=122γijξ.

γijsi=γijξγijsi×γij=a1×a2ξ2+O(ξ3)|γij|=γijγij=(a1ξ+a2xi2+...)(a1ξ+a2xi2+...)=|a1||ξ|1+2a1a2|a1|ξ+...

Thus we obtain:

vij=k4π[a1×a2|a1|31ξ+O(1)]ds=k4πa1×a2|a1|3log(1|ξ|)+O(1)

Now we let Γ=k4Π|a1|3log(1/ξ) then the structure of our velocity is simply vij=Γγξ×γξξ.