Search CTRL + K

Lecture 11 - Second Fundamental Form

Theorem

A local diffeomorphism f:S1S2 is conformal iff there exists a function:

λ:S1R

such that f<v,w>p=λ(p)<v,w>p
If λ(p)=1 we have a local isometry.

Corollary

A local diffeomorphism f:S1S2 is conformal iff for any surface patch X of S1 the first fundamental form X of S1 and of the patch X~ of S2 are proportional.

Definition

The area AX(R) of part of X(R) of a surface patch:

X:UR3

corresponding to a region RU is:

AX(R)=R||Xu×Xv||dudv
Proposition

If XuXu=E,XuXv=F,XvXv=G then:

||Xu×Xv||=EGF2
Proof

||Xu×Xv||2=(Xu×XvXu×Xv)=||Xu||2||Xv||2sin2θ=EGsin2θ
where θ is the angle between Xu and Xv
It is known that cosθ=XuXv||Xu||||Xv||=FEG
This completes our proof.

Proposition

The area of surface patch is unchanged/invariant under reparameterization.

Proof

Let X:UR3 be a surface patch and let X~:U~R3 be a reparameterization of X. Let ϕ:U~U be the reparameterization map:

X~(u~,v~)=Xϕ(u,v)

Note that:

X~u~×X~v~=det(Dϕ)Xu×Xv

Thus:

R~||X~u~×X~v~||du~dv~=R~|det(Dϕ)| ||Xu×Xv||du~dv~=R||Xu×Xv||dudv

Second Fundamental Form

Let X be a surface patch for an oriented surface with standard unit normal n^. Consider (u,v)(u+Δu,v+Δv) , then the surface moves away from the tangent plane through X(u,v) by a distance of:

(X(u+Δu,v+Δv)X(u,v))n^

By Taylor expansion we obtain that:

(X(u+Δu,v+Δv)X(u,v))n^=(XuΔu+XvΔv+12(Xuu(Δu)2+2XuvΔuΔv+Xvv(Δv)2+...))n^=12[Xuun^(Δu)2+2(Xuvn^)ΔuΔv+Xvvn^(Δv)2]

Now if we let Xuun^=L,Xuvn^=M,Xvvn^=N then we obtain our second fundamental form:

Definition

Let S1 be a surface and X:UR3 be a parameterization of S1, then the second fundamental form is:

12(Ldu2+2Mdudv+Ndv2)

where Xuun^=L,Xuvn^=M,Xvvn^=N.