Search CTRL + K

Lecture 13 - Curvature

Gauss (theorema egregium)

The Gaussian curvature of the surface is invariant under isometries

By definition isometries preserve the 1st fundamental form, it suffices to prove that K can be expressed in local coordinates purely in terms of the coefficients (E,F,G) of the 1st fundamental form and its derivatives.

Proof

Let X:US be an isometry with basis vectors (Xu,Xv,n)
Let

Xuu=Γ1 11Xu+Γ2 11Xv+LnXuv=Γ1 12Xu+Γ2 12Xv+MnXvu=Γ1 21Xu+Γ2 21Xv+MnXvv=Γ1 22Xu+Γ2 22+Nn

We have that Xuv=XvuΓa ab=Γa ba
By taking XuXuu=Γ1 11E+Γ2 11F12Eu=Γ1 11E+Γ2 11F since the LHS is simply 12(XuXu)u
Likewise taking XuuXv we obtain that Γ1 11F+Γ2 11G=Fu12Ev
Thus we obtain:

Γ1 11=GEu2FFu+FEu2(EGF2)Γ2 11=EuF+2EFuEEu2(EuF2)

With the compatibility condition that Xuuv=Xuvu we obtain:

(Γ1 11Xu+Γ2 11Xv+Ln)v=(Γ1 12Xu+Γ2 12Xv+Mn)u

Which gives us the Gauss-Weingarten equation:

(1)(Γ1 11)v+Γ2 11Γ1 22a21L=(Γ1 12)u+Γ2 12Γ1 12a11M

One can also obtain that:

(2)a11Ma21L=LNM2EGF2F=FK

(1) + (2) gives us :

K=1(EGF2)2(|12Euv+Fuv12Guu12EuFu12EvFv12GuEF12GvFG||012Ev12Gv12EvEF12GuFG|)

Tangential Derivative

Definition

We will use the symbol to denote the tangential derivative. It is the tangential component of the ordinary derivative. That is:

ua=au(nau)n
Definition

A geodesic is a vector that has the form of

uXu=0vXv=0